

DESIGN OF A PC CONTROLLED VISION INSPECTION SYSTEM

A thesis written at

DMC

and submitted to

KETTERING UNIVERSITY

in partial fulfillment
of the requirements for the

degree of

BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

by

MATTHEW M. PUSKALA

March 2002

 ii

DISCLAIMER

This thesis is being submitted as partial and final fulfillment of the cooperative

work experience requirements of Kettering University needed to obtain a Bachelor of

Science in Electrical Engineering Degree.

The conclusions and opinions expressed in this thesis are those of the writer and

do not necessarily represent the position of Kettering University or my employer, or any

of its directors, officers, agents, or employees with respect to the matters discussed.

 iii

PREFACE

This thesis represents the capstone of my five years combined academic work at

Kettering University and my job experience at DMC and other sponsors. Academic

experience in programming, electronics, and design combined with work assignments in

control systems, software design, and electronics, proved to be valuable assets while I

developed my thesis and addressed the problem it concerned.

Although this thesis represents the compilation of my own efforts, I would like to

acknowledge and extend my sincere gratitude to the following persons for their valuable

time and assistance, without whom the completion of this thesis would not have been

possible:

1. Dr. James McDonald, Associate Professor of Computer Engineering at Kettering

University, for his support and guidance in the organization and development of

this thesis, while acting as my faculty advisor

2. Ken Brey, Technical Advisor at DMC, for all his help and guidance with regard to

the technical aspects of this thesis, while acting as my employee advisor.

 iv

TABLE OF CONTENTS

DISCLAIMER .. ii

PREFACE .. iii

LIST OF ILLUSTRATIONS ... vi

I. INTRODUCTION .. 1

 Problem Topic ... 1
 Background ... 1
 Criteria and Parameter Restrictions .. 2
 Methodology ... 2
 Primary Purpose .. 3
 Overview ... 3

II. HARDWARE ... 4

 Personal Computer .. 5
 Camera and Lighting... 5
 Triggering Hardware ... 5

III. USER INTERFACE ... 8

 Setup screen .. 8
 Main Screen .. 9
 Parameters screen.. 11
 Access Database.. 12

IV. PROGRAM IMPLEMENTATION .. 15

 Key Controls ... 15
 DVTSID(0) and DVTSID(1) ... 15
 DataLinkWinsock(0) ... 16
 Winsock(0) .. 16
 Inifile1 ... 16
 Program Startup and Initialization .. 17
 Database Operations ... 19
 Inspection Data Reception and Handling ... 23

V. CAMERA SETUP AND PROGRAMMING ... 26

 Camera, Lens, Light, and Fixture Setup ... 26
 DVT Program.. 29

 v

 Soft sensors .. 30
 IO setup ... 35

VI. CONCLUSIONS AND RECOMMENDATIONS ... 40

 Verification Methods and Results ... 41
 Future Recommendations ... 41

APPENDICES .. 42

 APPENDIX A: CODE SAMPLES ... 43
 APPENDIX B: FLOW CHARTS ... 47
 APPENDIX C: SYSTEM WIRING DIAGRAM ... 51

 vi

LIST OF ILLUSTRATIONS

Figure Page

1. Basic system block diagram.. 4

2. Sample of material .. 6

3. Inspection Program Setup screen .. 9

4. Inspection Program Main Screen with a reel open ... 10

5. Inspection Program Main Screen with all reels closed ... 10

6. Inspection Program Parameters screen ... 12

7. Access database tables .. 13

8. Reel table. ... 14

9. Failure table. ... 14

10. Main Screen Form_Load subroutine .. 18

11. DAO variable declarations .. 20

12. Excerpt from Parameters screen Form_Load subroutine...................................... 21

13. Excerpt from Parameters screen cmdDone_Click subroutine 22

14. CreateReelRecord subroutine ... 23

15. DataLinkWinsock_DataArrival subroutine .. 23

16. HandleNewInspection subroutine ... 25

17. Lighting and fixture .. 27

18. DVT soft sensors (initial chain links) ... 31

 vii

19. DVT soft sensors (final chain links) ... 33

20. Framework I/O Parameters: Timing settings .. 36

21. Framework I/O Parameters: Outputs settings ... 37

22. Framework I/O Parameters: User settings .. 37

23. Data Link Parameters: Sensors screen .. 38

24. Data Link Parameters: Strings screen ... 39

Appendices

A-1. MainMenu Initialize subroutine ...44

A-2. CreateReelTable Subroutine ..45

A-3. OpenDatabase subroutine ..46

B-1. Flowchart for MainMenu Form_Load subroutine48

B-2. Flowchart for MainMenu Initialize subroutine ..49

B-3. Data handling subroutine ...50

C-1. System Wiring Diagram ..52

 1

I. INTRODUCTION

 This paper documents a solution provided by DMC to one of its customers in the

form of a vision inspection and data acquisition system. DMC is an engineering

consulting company that provides custom software solutions for its customers. For this

project the customer is a company that operates chemical plating processes for metal

products. In this solution, a “smart” digital camera is set up and programmed to take

images and pass inspection results and measurements to a custom program. This

program, the Inspection Program, records data and runs on a personal computer (PC).

Problem Topic

 DMC has agreed to assist the customer with problems related to quality control of

a specific product. This product, in reel form, has occasional bent parts, or pins, at the

end of a metal plating process. DMC’s task is to design and implement a vision and data

acquisition system to identify bent pins, providing consulting services by specifying

hardware and wiring, and programming the system.

Background

 DMC provides many different types of software and control systems solutions for

its customers. Vision inspection and data acquisition systems are common solutions

which customers ask DMC to provide.

In this system, the product is a series of metal pins in the shape of two pronged

forks on a reel. Each fork will later be folded over to create a female pin connection used

 2

on D-Sub cable connectors. This customer wishes to find a solution to this problem

because their end customer has had quality issues with the end product they received.

Pins that are bent before or during the metal plating process interfere with the end

customer’s next portion of the manufacturing process.

Criteria and Parameter Restrictions

 The primary constraints for this system are budgetary and time related. The

customer pays for all hardware used and all DMC time spent working on the project. The

system is to be capable of inspecting parts at a rate of 900 parts per minute, because this

is the maximum rate at which the line will run. The system must be capable of detecting

variations in the part’s tip location within +/-.003 Inches. The system will display live

images and continuously updated statistics to the operator during the plating process.

This allows the operator to quickly assess problems in the metal plating process and

potential malfunctions in the vision inspection system. Detailed data on failed parts must

be stored for later access by the customer. Ultimately, the customer can use this

statistical data for process improvement and maintenance of the metal plating system.

These constraints and criteria are developed and agreed upon by the customer and DMC

during the proposal/estimate stage and the specifications stage of the project.

Methodology

 The methodology used to develop a successful system relied primarily upon

DMC’s and the author’s past experience and knowledge gained from similar successful

projects in vision inspection and data acquisition. The first step was to develop a system

proposal and estimate, which was agreed upon by DMC and the customer, including

basic system requirements and costs. The next step was to develop system specifications,

 3

which also was to be agreed upon by DMC and the customer. The specifications

included details on hardware and software to be used in system development,

performance specifications, and general information about all screens contained within

the Inspection Program. Starting from the basic system guidelines from the proposal and

specifications, the entire system was developed and debugged using a method of trial and

error. After the general system was running, it was tested and further fine-tuned by

running actual reels of the part through. Worst case scenario testing was used to check

the system’s error handling and recovery.

Primary Purpose

 The purpose of this document is to present the end solution provided by DMC for

the customer.

Overview

 Both general use and theory of operation for the system are discussed within this

document. The Chapter II deals with all system hardware and wiring. Additionally, the

general flow of digital inputs and outputs (IO) is explained. Chapter III deals with the

user interface, and general use of the system. It includes detailed explanations of all

screens and features of the Inspection Program. Accessing the stored data through

Microsoft Access is also discussed. Chapter IV considers the code used to create the

Inspection Program. PC-camera communications along with program manipulations of

the Access database are discussed in this chapter. Physical camera, lens, light, and

fixture setup and the camera’s program are discussed in the Chapter V.

 4

II. HARDWARE

 The system consists of four major pieces of hardware. An IBM-compatible PC

and a digital camera handle all inspection data processing. The other two pieces of

hardware, a high speed counter and a photo eye sensor, are used to trigger the camera

once per two parts. Additional hardware in the system includes several relays and

switches, a 7.5W 24VDC power supply, green and red indicating pass and fail lights, and

a fail indicating buzzer. All hardware, with the exception of the PC, runs on 24VDC

power. The wiring diagram of the system can be seen in Appendix C. A basic block

diagram of the system is shown in Figure 1.

Figure 1. Basic system block diagram.

Breakout
Board

Photo eye
Sensor

Counter

Camera

PC

Material

Ethernet

Panel

Back Light

 5

Personal Computer

The IBM-compatible PC has a Pentium I® processor with a 166MHz clock speed

and 128 Megabytes of system RAM. The operating system running on the PC is

Microsoft® Windows® 98 Second Edition. The computer receives information from the

DVT camera through a crossover Ethernet cable attached to its network card.

Camera and Lighting

The 630 Smart Sensor Camera®, manufactured by DVT® Corporation, uses

DVT’s LUD-25F 25-mm focal distance lens with a 1-mm spacer ring. A 15 pin high

density (D-Sub) cable connects the camera to the DVT breakout board. The DVT

breakout board serves as the central connection point for the system’s digital IO. The

pass and fail indicating lights are controlled by IO2 (Pin 4) of the breakout board through

a latching relay that has both a standard and inverted output. The indicating buzzer is

controlled by IO8 (Pin 10) of the breakout board, also through a latching relay. Both

latching relays are set to latch on a fail condition and are reset through a momentary

switch on the panel door.

The system uses the IDRA-D Diffused Red LED Array, also manufactured by

DVT, as the illumination source for vision inspections. This device receives 0VDC from

DVT breakout board Pin 15 on its blue wire and 24VDC from DVT breakout board Pin

16 on its brown wire. The black strobe input of the IDRA-D is connected to IO12 (Pin

14) of the breakout board.

Triggering Hardware

 A WF 15-B4150 15-mm photo eye, manufactured by SICK, Inc., is set to trigger

when the light path is uninterrupted, outputting a high signal. This sensor is designed

 6

like a fork, with the light emitter on one part of the fork and the photoelectric sensor on

the other part. The material passes through the 15-mm space between the fork tips. The

photo eye triggers when the hole in the material’s carrier, as seen in Figure 2, passes in

between the fork tips. The photo eye is set to have a sourcing output. The brown wire is

wired to 24VDC and the blue wire is wired to 0VD. The black output wire is wired to the

high speed counter.

Figure 2. Sample of material.

 The NE131.02.3AX01 Programmable Counter, manufactured by IVO, is wired to

receive the output of the SICK photo eye through pin 4. The count signal received is a

differential input between pin 4 and pin 3 on the counter. A +12VDC or higher

differential between these pins will cause the counter to increment. 0VDC is wired to

CARRIER HOLE

BASELINE

 7

pin 3. The counter is powered by 24VDC to pin 1 and 0VDC to pin 2. The output of the

NE131 is a physical relay. The relay input, pin 7, is wired to 24VDC. The output of the

NE131 is wired to pin 6 for a normally open output. Pin 6 is wired to IO1 (Pin 3), the

trigger input of the DVT breakout board. All other pins on the NE131 are left

unconnected. The programmable counter is programmed to reset the count and output a

10-ms pulse signal when the count reaches two. This causes the DVT Camera to be

triggered one time for every two parts that pass by the photo eye.

 8

 III. USER INTERFACE

 The system is operated through the Inspection Program running on the PC. This

Inspection Program consists of three screens: the Setup screen, Main Screen, and

Parameters screen. Additionally the user is able to view the data collected by the system

by opening created database files in Microsoft™ Access 2000®.

Setup Screen

 The Setup screen, shown in Figure 3, is accessed by holding “control” and

pressing “s” on the keyboard during the program start up while the Splash screen is

shown. Engineering parameters can be changed from this screen. The Database Path

contains the path where the Access database will be stored on the PC. The path can be

changed to point to a database file that does not yet exist or a preexisting database. The

program will automatically create a new database if the file does not exist. Camera IP

Address contains the Ethernet Internet Protocol (IP) address of the DVT camera being

used in the system. Scale contains the multiplier value used to convert DVT

measurements (given in pixels) to thousandths of Inches before it is stored in the

database. All changes made to the Setup screen are remembered each time the program is

run until they are changed again.

 9

Figure 3. Inspection Program Setup screen.

Main Screen

 The Main Screen, shown in Figure 4, gives general feedback to the user during

normal operation and allows access to the Parameters screen. This program uses a

concept of open and closed reels. Only one reel is allowed to be open at any given time.

The open reel is the reel which is currently being inspected. Once a reel is closed, or

ended, it cannot be opened again without editing the database. Any data the Inspection

Program receives from the camera while there are no open reels is ignored. While a reel

is open and inspections are running, the Main Screen looks like Figure 4. When all reels

are closed the Main Screen looks like Figure 5, with all the Cumulative Analysis data

showing “?” and both displays showing WAITING FOR INSPECTION.

 The data shown in Cumulative Analysis is pertinent to the currently open reel only.

The Current Inspection updates the most recent image taken by the camera as quickly as

possible. Due to the high rate of inspections, the low processing power of the PC running

the computer, and limitations of the DVT camera’s processing power, not every image

can be seen on the Current Inspection display. It is capable of displaying approximately

two images per second. In most cases, all of the failed images are updated on the Most

Recent Failed Inspection display. The Most Recent Failed Inspection display may have

 10

similar problems to the Current Inspection display in situations where there are multiple

failures in quick succession.

Figure 4. Inspection Program Main Screen with a reel open.

Figure 5. Inspection Program Main Screen with all reels closed.

 11

 To create a new reel, the Start New Reel button is pressed, which opens the

Parameters screen. The program does not allow a new reel to be created if there is

already an open reel. When a reel is finished being run, the operator presses the End Reel

button to permanently close it. When the pause feature is used, any inspection

information received from the DVT camera is ignored. This allows adjustments to be

made to the reel, which cause inadvertent camera triggers, without adding false failures to

the inspection database. To use the pause feature, the user presses the green Pause

button. The button then turns red, indicating that the system is not running, and the

caption on the buttons changes from Pause to Resume. To turn off the pause feature, the

button is pressed again.

 Under File on the menu bar, the user can launch DVT Framework 2.3, manually

force the camera to inspect, or exit the program. Under Reel on the menu bar, the user

has access to the same functions the buttons allow: Start New Reel, End Reel, and

Pause/Resume. Under Help, the About screen can be displayed, which shows the program

name, program version number, and support contact information.

Parameters Screen

 When the operator starts a new reel, the part, order, and reel numbers are all

entered into the Inspection Program through the Parameters screen, shown in Figure 6.

To facilitate quick change over to a new reel, the part number and order number of the

most recent reel are already automatically selected on this screen. Additionally, any

previously entered parameters for all three numbers can be chosen from the combo boxes

by clicking on the arrows. These previously entered values are obtained from the

database. Alternately the user can enter an entirely new value through the keyboard.

 12

Figure 6. Inspection Program Parameters screen.

When all parameters are satisfactory, the user presses the Done button. The part

number and order number are checked against preexisting information in the database. If

there is already a reel with both an identical part and order number, an error message

appears, stating, A Reel with these values for Order Number and Reel Number already exists.

Please type in a unique value. The part and order numbers are reset to the last valid entries

and the reel number is cleared. If the user leaves any fields blank and presses the Done

button, the Inspection Program will ask for a value to be entered into all fields before

proceeding. Alphanumeric characters and spaces are allowed to be entered for all three

parameters.

Access Database

 All data recorded by the program is entered into a Microsoft Access 2000

database, specified in the Setup screen. The Inspection Program does not allow the user

to access inspection data besides overview information for the currently open reel

displayed on the Main Screen. To access detailed information on specific part failures

within a reel, or on previously closed reels, the user must open the database with

 13

Microsoft Access 2000, Microsoft Access XP, or a compatible program. The purpose of

this database is to allow the user to perform any data analysis desired using tools

contained within Microsoft Access, such as SQL statements and queries, or by exporting

the data to other software packages.

 There are two tables in the inspection database: the failure table and reel table. To

open either one, the user first opens the database file and then double-clicks on the table

in the screen shown in Figure 7.

Figure 7. Access database tables.

 Figure 8 shows a sample reel table with two reel entries. The Index field is an

integer field that automatically increments for each new entry. This field is used to link

the reel table with the failure table. Start Time records the date and time when the reel

was first entered into the table, i.e., the time when the Done button is pressed on the

Parameters screen. The End Time field contains the time when the reel is closed, i.e., the

 14

time when the End Reel button is pressed on the Main Screen. A blank value for End Time

signifies that the reel is still open.

Figure 8. Reel table.

 The failure table contains detailed measurement information about every part that

fails the inspection. A sample failure table is shown in Figure 9. The Index field is set to

be identical to the Index field of the corresponding reel in the reel table. Sequence Number

contains the sequence of the part being inspected from the beginning of the reel, with the

first part being numbered 1. From the camera’s perspective, the part to the right is the

first part, and thus will have a sequence number one less than the part to its left. Time

contains the date and time at which the inspection of that part took place. Tip 1

Measurement and Tip 2 Measurement fields store the distance, in thousandths of an Inch,

from the tip of the part to the baseline. The baseline, shown with a red line in Figure 2 on

page 6, is simply a datum point used for measurement reference. Tip 1 is the tip farthest

to the right from the camera’s perspective.

Figure 9. Failure table.

 15

IV. PROGRAM IMPLEMENTATION

 The Inspection Program is written in Microsoft® Visual Basic® 6.0 (with Service

Pack 5). The source code uses three add-ins: DMC ini File version 1.1, Far Point Button

Objects, and DVT SID Active X Control 1.1.

Key Controls

Embedded within the Main Screen are five important control objects which are

used by the Inspection Program to communicate to external objects. Four of these

objects connect to the camera while the fifth connects to a text file used to store settings

information.

DVTSID(0) and DVTSID(1)

There are two DVTSID objects (DVT Sampled Image Display): one for the

Current Inspection display (DVTSID(0)) and one for the Most Recent Failed Inspection

display (DVTSID(1)). Throughout the program, the connection is left active, but the

DVTSID(0).StopImages and DVTSID(0).PlayImages(All) (or

DVTSID(1).PlayImages(Fail_Only) for the second DVTSID control)

commands are used in order to toggle showing live images. If these displays are set to

play images, they will show a new image every time the camera’s image updates,

regardless of whether or not corresponding inspection data is received by the Inspection

Program.

 16

DataLinkWinsock(0)

DataLinkWinsock(0) is a Microsoft® Windows Socket (Winsock®) control

set to receive inspection data from the DVT camera’s Data Link port. To receive this

data the Winsock’s remote port is permanently set to 5001 and protocol is permanently

set to 0 (TCP) from the properties window. The camera’s Data Link at port 5001 is only

capable of outputting strings that are custom set in Framework; it is not capable of

receiving data from the Inspection Program.

Winsock(0)

Winsock(0) is a Winsock control that connects to the DVT camera’s command

terminal. Its properties are set the same as the Data Link port, except it connects through

the camera’s command terminal at port 5000. The command terminal can be a very

powerful tool, but requires a large amount of string parsing code to handle the different

strings of information it can return. However, in this program, the command terminal is

only used to manually force the camera to trigger from the File menu on the Main Screen.

This operation is only used to debug or setup the system.

Inifile1

The fifth crucial control on the Main Screen is the inifile control. The inifile

control was developed in-house at DMC for previous projects. It is designed to write and

read data from an ini file; a file where program settings are stored and available for use in

between sessions. The inifile control in the Inspection Program, Inifile1, is linked to

the file Vision Inspection.ini, stored in the program directory. Contained within this file

are all of the settings from the Setup screen, along with the most recently selected order

and part numbers.

 17

Program Startup and Initialization

 Upon starting the program, the Splash screen appears which gives the user the

option to hold “control” and press “s” during the five seconds it is displayed to bring up

the Setup screen. If the Setup screen is displayed it will show the most recently entered

parameters, loaded from the inifile. After the user is done entering parameters, the new

parameters will be stored back into the inifile and the global variables corresponding to

each parameter are set. If the user does not enter the Setup screen, the global variables

are set from the previously stored inifile values.

 Next the Main Screen form is loaded, using the command frmMainMenu.Show.

This causes the Main Screen’s Form_Load subroutine to run, shown in Figure 10 (a

flowchart for Form_Load is shown in Appendix B-1). The very first line of this

subroutine calls the function Initialize. If Initialize runs successfully without

errors, then it returns a True value, allowing the Inspection Program to exit the while-

loop and execute the central portion of the program. If an error does occur, a message

box is shown, telling the user to check cable connections and make sure the DVT camera

is completely booted. The program then loops back and shows the Setup screen.

 The Initialize function, shown in Appendix A-1, sets up connections to

most controls and the database (a flowchart for Initialize is shown in appendix B-

2). At the beginning of this function, the first assumption is that all reels are closed, thus

the Paused and ReelOpen variables are both set to False. These variables are

changed at the end of this function if there is found to be an open reel in the database.

Inifile1 is set so that it is ready to be read from or written to later on. The

ClearPassFailImg subroutine is called every time all reels are closed.

 18

Figure 10. Main Screen Form_Load subroutine.

The next several lines of code deal with control objects that need active

connections to the DVT camera. The Initialize function first checks to see that

each of these controls are disconnected and if they are not it disconnects them. Next it

sets the remote host property equal to the value set for the DVT camera’s IP address in

the Setup screen. All of the devices are then connected through four separate calls to the

same ConnectToWinsock subroutine, each time passing the control as a Winsock by

reference. This subroutine contains a simple loop that continuously attempts to connect

to the remote host until either a connection is made or a timeout value of one second has

passed. There is a 10-ms delay between each attempt to connect. If any of these

connections fail, the Initialize function will return a Fail result.

Next the function calls the OpenDatabase subroutine. This subroutine checks

for the existence of the database file specified in the Setup screen, and both the reel and

failure tables within it. It creates the database and tables if they do not exist. The

subroutine then links the tables each to a DAO record set.

 19

The Initialize subroutine ends by calling CheckForOpenReel, which

searches for open reels with an SQL statement. If this subroutine finds an open reel, it

sets that reel to the currently opened reel, pauses the program, and warns the user with a

message box. The logic behind this portion of the code is a large part of the error

handling. It is only possible for one reel to be open at a time, with the exception of

manually editing the database, which is a situation the program does not handle. If the

program is either closed with an open reel, or if the system goes down unexpectedly, the

Inspection Program will not lose track of reels that are left open.

Database Operations

 In the Inspection Program, a major part of handling data is managing the

databases. This is done through the use of Microsoft Data Access Objects (DAO) and

Structured Query Language (SQL) statements. Figure 11 shows the DAO related

variable declarations that can be found in the declarations section of the Inspection

Program’s DatabaseOperations module. A DataBaseWorkSpace is a

workspace, needed to setup a database. DataBase1, the active database, is a subset of

that workspace. The tables must be assigned to record sets in order to be manipulated

using DAO and SQL. Record sets also can be filled using SQL queries. In DAO, record

sets are a subset of databases.

A major portion of the OpenDatabase subroutine, which initializes the

database and record sets, can be seen in Appendix A-3. First the workspace is set. Then,

if the database, Database1, does not exist, it is created and set using the

CreateDatabase command. If the database already exists, it is set using the

OpenDatabase command. After the database is set, the subroutine checks for the

 20

existence of ReelTable within the database. If it is not found, the table is created by

calling the subroutine CreateReelTable, which is shown in Appendix A. After

ReelTable is either created or found to already exist, the record set by the same name

is set to it.

Figure 11. DAO variable declarations.

 SQL statements are used multiple times in this program for different reasons, such

as searching for open reel records, grabbing all possible values of a field, and making

sure that the correct record is selected before editing it. Figure 12, which shows part of

the Parameters screen form’s loading routine, contains a SQL query example. The code

shown is used to fill the order number combo box on the Parameters screen with all

previously entered values for the order number. The temporary record set is filled with

distinct values of the field Order Number, using the distinct command in the SQL

statement. The for-loop loads each order number value into the combo box. This is done

using the MoveFirst command to move to the first record in the temporary record set,

and then using MoveNext command to move to each subsequent record. The

 21

Distinct command in the SQL statement ensures that there are no duplicate order

number values in the combo box.

Figure 12. Excerpt from Parameters screen Form_Load subroutine.

 Another example of a SQL query is shown in Figure 13. Figure 13 is a sample of

code from the Parameters screen’s cmdDone_Click subroutine (the subroutine that

runs after the user has clicked the Done command button). Before creating a new record

from the selected values of order number, part number, and reel number, the Inspection

Program must first check that there is not already a record with identical values for both

order number and reel number. The SQL statement shown in Figure 13 puts any such

records found in the record set DuplicateNames. If one or more records exist in

DuplicateNames, the subroutine forces the user to select different values.

 22

 All the data received from the camera must be stored to the database. This is

done by adding and editing records in the tables. Figure 14 shows the

CreateReelRecord subroutine, which is called to add a new blank record to the reel

table. The general structure of adding a new record is to use the Table.AddNew

command, followed by commands filling in all of the field values, and finished with the

Table.Update command. The process for editing a record is very similar. First the

correct record needs to be selected using an appropriate command, such as

ReelTable.FindFirst[SQL statement]. Then the same procedure shown in

Figure 14 is used, except replacing the Table.AddNew command with a

Table.Edit command.

Figure 13. Excerpt from Parameters screen cmdDone_Click subroutine.

 23

Figure 14. CreateReelRecord subroutine.

Inspection Data Reception and Handling

 The Inspection Program is set to receive data through a Winsock control named

DataLinkWinsock(0). Whenever data is transmitted by the camera through this

Ethernet TCP connection, the subroutine DataLinkWinsock_DataArrival, shown

in Figure 15, is automatically executed. Within this subroutine and all the other routines

that it calls, all of the data processing takes place. The flowchart for the data handling is

shown in Appendix B-3.

Figure 15. DataLinkWinsock_DataArrival subroutine.

 24

 The data is first read with the GetData command before the program checks for

the paused state and open reels. The GetData command must be executed, even if the

program is paused and all reels or closed. This makes certain that the data is cleared out

and ignored, instead of being received the next time the DataArrival event occurs.

Data is received as a string with eight values separated by commas followed by a colon.

The colon is used as a delineator between inspections. This is done so that if the

Inspection Program happens to miss data transfer for any reason, such as being in stuck in

modal mode, the program will still be able to handle an extended string containing two or

more inspection results.

 The HandleNewInspection subroutine, shown in Figure 17 loops through

three subroutines until the string containing the received inspection data,

ResultString, is empty. SeparateInspection first looks for the first colon

from the left, and breaks the string at that point (all done using the Split command).

The data to the left of the colon, which would be the first inspection to have occurred

chronologically, is placed in the variable, OneInspection. The remaining data is

placed back in ResultString and the colon is discarded. Next the comma separated

string, OneInspection, is separated into an array of eight singles (four-byte floating-

point numbers). Finally the array is received by AddNewInspection, which uses it to

determine the actual results and edit the tables accordingly. All variables passed from

HandleNewInspection to the three subroutines it calls are passed by reference,

except for ProductResults, which is available to all routines because it is declared

as a public variable.

 25

Figure 16. HandleNewInspection subroutine.

 26

V. CAMERA SETUP AND PROGRAMMING

 The setup of the main sensor of the system, the DVT camera, is a crucial part of

the overall system. The physical setup and positioning of the DVT camera and related

items are the first half of this portion of the system. Achieving reliability and

repeatability in images captured by the DVT camera depends primarily on the DVT

camera positioning, lighting, and lensing, along with material fixturing. The second half

of this system portion is programming the camera. All of the image processing occurs

within the DVT camera’s embedded controller. Besides taking measurements and

determining the pass/fail result of each part, the DVT camera acts as a central point for

IO.

Camera, Lens, Light, and Fixture Setup

 The DVT camera is set up to find pins bent in the direction perpendicular to the

plane of the material. The DVTSID display on the right in Figure 4 on page 10 shows an

example of a bent pin. The pin on the right in this image is bent downward compared to

the pin on the left. The camera is set to detection of bent pins possible by viewing the

part nearly head on with the pins. The camera is angled 10 degrees off axis from the part,

so that from the DVT sensor’s aspect, a perfectly straight pin will be pointed slight below

the rest of the part.

 A picture of the fixture and lighting is shown in Figure 17. The DVT camera uses

diffused backlighting from the DVT IRDA-D light. Backlighting is used because it

 27

provides optimum contrast between the part and its background. In an ideal backlighting

situation, the object being inspected becomes a completely black silhouette on a

completely white background. This gives a large amount of contrast and high gradients

at the edges of the object, thus making edges easier to find by vision inspection software.

The backlight is a red LED array that comes with a thin plastic diffuser on the front. In

addition to this, a larger white piece of plastic is put in front of the light to cause further

diffusion. The light is diffused so that it is spread evenly across the camera’s field of

view. Without diffusion, the LED array appears as several bright circles (one circle at

each LED) as opposed to one bright, uniform plane.

Figure 17. Lighting and fixture.

 The lens used for the camera is a DVT LUD-25F 25-mm lens. It has variable

focus, but no aperture control. A 1-mm spacer ring is placed between the camera and the

 28

lens. The spacer ring is not necessary to achieve focus; however it allows the lens to be

screwed in more tightly when focused. This makes the lens focus more stable and less

likely to change if the camera is bumped. The focus is set by looking at a still part and

adjusting the lens until the focus is optimized at the ends of the part’s tips. The exposure

time is set to .7 ms using the DVT Framework software. This gives good contrast

between the bright background and the dark part and is more than short enough to keep

the part from blurring significantly at even the highest speeds.

 To assure that the part does not blur at high speeds, the number of pixels that the

part will move during the exposure time is calculated. If this value is greater than one

pixel, it can be assumed that there will be at least minor blurring. The speed of the part in

pixels per second is determined by dividing the speed (30 feet per minute or 6 inches per

second) by the resolution (.00184 inches per pixel). The distance the part travels during

exposure time is calculated by multiplying the speed (approximately 3,260 pixels per

second) by the exposure time (.0007 seconds). The part moves a maximum of 2.3 pixels.

Even when the line is run at top speed, this blurring is barely noticeable. Furthermore,

because the movement and blurring occur in the horizontal direction and the precision

measurements are taken in the vertical direction, there is no effect on measurement

precision and accuracy.

 The part is placed in a firm fixture so that it will have consistent placement within

the camera’s field of view at varying speeds. Rollers to the right and left of the fixture

guide the material through the fixture. The fixture has a hollowed out area that the

material travels through. In the center, the fixture is completely opened up so that the

camera has an unobstructed view of the part.

 29

DVT Program

 The DVT camera runs version 2.3 of firmware, and thus is programmed through a

PC that runs Framework 2.3. The DVT camera is programmed to perform vision

inspections using “soft sensors”. A soft sensor can be anything from a detection tool or

positioning tool of some sort that is drawn on the image, to an invisible distance sensor

that gives the distance between two other sensors, to a script sensor, that is a bit of code

written to perform a task. These soft sensors can be referenced off each other, to form a

chain of dependencies; i.e., sensor 1 is positioned off sensor 2, which in turn references

sensors 3 and 4. A reference can be a position reference, where, for example, sensor 1

might be moved three pixels to the left and rotated 90 degrees based upon the results of

sensor 2. Or a reference can be a soft sensor that is referred to as a variable in a script

sensor. Just as with most programming languages, soft sensors are not allowed to have

circular references. Every group of soft sensors configured to inspect a part make up one

system program, called a “product.” Although the camera is capable of storing and

switching between multiple products, only one program is used in this application.

 The images of the parts were found to move around a fair amount in the screen

during actual inspections, depending upon the speed of the line. The cause of this was

not determined, though some possibilities include delay in the mechanical relay of the

high speed counter, or inconsistency in the point at which the photo eye was triggering.

The field of view is wide enough so that there can be as many as three parts displayed at

one time. This ensures that there will always be at least two parts available for

inspection. Because of the movement, the general positioning soft sensors must have a

robust way of determining which two parts need to be inspected.

 30

 Because the inspections occur at a high rate, the camera must finish capturing the

image, digitally acquiring it, performing all inspection logic and measurements, and

setting IO before it is time to take the next image. The camera has 133 ms to complete all

of these tasks because there are a maximum of 450 inspections per second. The current

inspection program has a total inspection time of around 80 ms, never clearing 100 ms.

Soft sensors

 MinimumDistance, shown in Figure 18, is a “Precision Measurement: Area Edge

Line” soft sensor. This soft sensor has several vertical scan lines set across the area it is

drawn in, from bottom to top. Each scan line returns the first pixel it finds with a high

enough gradient (set to 8.7 for this sensor). The scan density parameter is set to 20

percent, so that a scan line will be placed on one of every five pixels along

MinimumDistance’s width, in order to conserve camera processing power.

MinimumDistance’s measurement parameter is set to “Minimum Distance,” which means it

will return the position found by the scan with the lowest vertical position. The purpose

of this soft sensor is to find the general position of just one of the parts.

 MinDistYScript is a script sensor that has the following lines of code:

MinDistYScript.Position.X=MinimumDistance.Position.X;
MinDistYScript.Position.Y=0;

This causes MinDistYScript’s X position to change depending on the X position result of

MinimumDistance, while the script sensor’s Y position remains constant. YPosition, shown

in Figure 18, is a simple “Translational Positioning: Line” soft sensor that positions based

on the result of MinDistYScript. The purpose of this translational sensor is to find the

general vertical position of the baseline, depicted in Figure 2 on page 6. The sensors

preceding YPosition are used to make certain that this sensor hits the baseline instead of

 31

one of the parts. YPositionYScript, similar to MinDistYScript, sets its Y position off the

vertical result of YPosition and leaves the X position constant.

Figure 18. DVT soft sensors (initial chain links).

 InPo_LeftBlob, shown in Figure 18, is positioned off YPositionYScript, so that it

remains in the same horizontal position, but adjusts vertically to remain just barely below

the baseline. InPo_LeftBlob is a “Blob Generator” soft sensor. A “Blob Generator”

converts all of the pixels within its area into either light or dark pixels. All pixels with

intensity values above a threshold (set to be 60 percent of the contrast of pixels within

InPo_LeftBlob’s area) are set to light pixels and all pixels below the threshold intensity are

set to dark pixels. The blob sensor is set to search for dark blobs, or groupings of dark

InPo_LeftBlob MinimumDistance

YPosition

 32

pixels that all touch each other. The objective of this sensor is to generate a blob

wherever a part intersects its area. InPo_LBSelect is a “Blob Selector” soft sensor that

references InPo_LeftBlob. It selects any number of blobs and filters out the rest based on

parameters that are set. The only criterion that is set for blob selection is Bounding Box

Width: Start=60, End=160. This means that the and blobs that have a length of less than 60

or greater than 160 will be filtered out and not selected by InPo_LBSelect. The script tool,

InPo_BlobScript is a script tool that looks at all the blobs selected by InPo_LBSelect. This

script chooses the left-most blob, and uses that blob’s left most pixel for its X position:

int i;
int LeftMost;

LeftMost=InPo_LBSelect.BlobBoundingBox.X0[1];
i=2;

while ((i<=InPo_LBSelect.NumBlobs))

{
if (InPo_LBSelect.BlobBoundingBox.X0[i]<LeftMost)
 {
 LeftMost=InPo_LBSelect.BlobBoundingBox.X0[i];
 }
i=i+1;
}

InPo_BlobScript.Position.X=LeftMost;

InPo_LBSelect.BlobBoundingBox.X0[i] is the blob’s left bounding box

position (InPo_LBSelect.BlobBoundingBox.X1[i] would be used to return the

right bounding box position). Just like the other two script sensors that have been

examined so far, this script sensor changes only one of the positioning coordinates (X)

and leaves the other (Y) constant.

 The general idea behind the three related “blob” soft sensors is to find the X

position of the left-most part that can be inspected. The part cannot be inspected if it is

too far to the left, causing one of its pins to merge with the fixture on the side. The

 33

position of the rectangle for InPo_LeftBlob ensures that if a blob is found too far to the left

it will be cut off, and that the next closest blob to the right will be far enough into the

rectangle. The length criteria of InPo_LBSelect assures that if a blob is too far to the left

so that only a small portion of it is in the box, it will not be selected.

 BaseLine, shown in Figure 19, is another “Precision Measurement: Area Edge

Line” soft sensor, just like MinimumDistance, set to scan vertically from the bottom up.

However, the measurement parameter of BaseLine is set to LineFit. This means that the

positions found by each scan are used to interpolate a line. This line is considered to be

the datum for the final pin distance measurements. BaseLine is set to have a scan density

of 35 percent. It is positioned off InPo_BlobScript so that it will always fall directly

between the two parts that are to be measured.

Figure 19. DVT soft sensors (final chain links).

F2T2Position

F2T1Position
F1T2Position

F1T1Position

F2T2Precision

F2T1Precision

F1T1Precision

F1T2Precision BaseLine

 34

F1T1Position, shown in Figure 19, is a “Precision Measurement: Area Edge Line”

sensor set to find the minimum, or lowest Y position of the first part tip (fork 1 tip 1). It

is set to 100 percent scan density so that no pixels are ignored in its search. F1T1Position

references InPo_BlobScript for its position so that it always lies directly on the correct pin

tip. Three other sensors, shown in Figure 19, are identical to F1T1Position (F1T2Position,

F2T1Position, and F2T2Position). There is one sensor corresponding to each of the four pin

tips.

 Referencing off F1T1Position is F1T1Precision, shown in Figure 19. This

“Precision Measurement: Line” soft sensor is always positioned to directly measure the

lowest point of the pin. There are three identical sensors corresponding to the other fork

tips. Fork1Tip1Distance is a “Math Sensor: Distance” tool that references both

F1T1Precision and BaseLine. This sensor returns a perpendicular distance in pixels

between the point that F1T1Precision finds and the line interpolated by BaseLine. The

three other similar soft sensors, Fork1Tip2Distance, Fork2Tip1Distance, and

Fork2Tip2Distance, measure a pixel distance for the other three fork tips. Each of the four

soft sensors is to be set to have a minimum and maximum distance set. If the

measurement does not fall within these values, the soft sensor’s result will be set to

WARN and the result value will be set to a positive number. The result value and

measurement value are both passed to the Inspection Program through Data Link for each

of the four sensors. If the distance is not a passing value, the sensor’s result is set to

WARN instead of FAIL, because when the sensor fails, the measurement value is not made

available to send through Data Link. The minimum and maximum distance parameters

remain to be set by the customer, depending on the tolerances required for the reel being

 35

inspected. However, the passing criteria are likely to be close to the range of 25 to 40

pixels.

 The actual measurements taken by the distance sensors are not direct

measurements. They are indirect measurements taken in the plane of the camera lens.

The part is not directly on-axis with the camera. The slight angle, which is necessary to

create background contrast at the pin tips, has two important consequences. First, a

perfect, unbent pin does not have a measured value of zero. Second, the measured values

are not an exact measurement of the distance a part is bent. However, because the angle

of the part with respect to the camera is only 10 degrees, the measured values are a close

approximation to the actual distance. The measured value of a pin has the most meaning

when it is compared relatively to other pins. For example, stating that a pin’s measured

distance is 25 thousandths greater than the measurement for a perfect, non-bent pin is

probably a good indication that the part should fail.

 The script soft sensor, FinalResult, references the results of the four distance

sensors as variables. If any of the four sensors do not return a PASS value for their result,

FinalResult.Result is set to FAIL. FinalResult is used to return an overall pass/fail

result for the inspection for two reasons. The first is so that indicator outputs (lights and

buzzers) can be set. The second is to ensure that the

DVTSID(1).PlayImages(Fail_Only) command works appropriately, allowing

all failed images to be displayed in the Inspection Program.

IO setup

 The input and output for the DVT camera are configured in the in the I/O

Parameters screen. On the Timing tab, shown in Figure 20, the outputs are set to be

 36

immediately available after the trigger, and the output pulse width is set to 50 ms. This

means that each time the camera triggers, the relevant outputs are asserted for 50 ms,

starting immediately after the camera is done processing the inspection results.

Figure 20. Framework I/O Parameters: Timing settings.

 Under the Inputs tab, the only input, Pin 1, is set to Trigger. On the Outputs tab,

shown in Figure 21, Pin 2 is set to User1, Pin 8 is set to User2 and Pin 12, is set to Strobe.

All other output settings are irrelevant and can be left in their default state.

Under the User tab, shown in Figure 22, USER1 is set to the function value Any,

and all soft sensors cleared below it, except for FinalResult, which is set to FAIL. This

ensures that this output is asserted only when the FinalResult soft sensor fails. USER2 is

set identically to USER1.

 37

Figure 21. Framework I/O Parameters: Outputs settings.

Figure 22. Framework I/O Parameters: User settings.

 38

 Inspection data is passed from the camera to the Inspection Program through the

DVT camera’s Data Link drivers. Data Link is configured through the Data Link

Parameters screen. STRING 1 is configured to Always be sent in the Data Link Parameters:

Sensors screen, shown in Figure 23. No other strings are used, and thus are all set to

Never.

 The actual data to be sent through Data Link is set up in the Data Link Parameters:

Strings screen, shown in Figure 24. The results and measurements of the four distance

soft sensors are sent out in an eight-value comma-separated string with no spaces, and

preceded by a colon. The result values sent are signed integers. A positive value

indicates that the soft sensor returned a warn value, and negative result represents a

failure, and a zero indicates the passed state. The distance measurements are all passed

as floating-point values.

Figure 23. Data Link Parameters: Sensors screen.

 39

Figure 24. Data Link Parameters: Strings screen.

 40

VI. CONCLUSIONS AND RECOMMENDATIONS

 The system described in this thesis is a successful solution to the customer’s

problem. It was developed within budget and meets all design requirements. The system

has not been extensively used yet for the customer’s needs, and thus not heavily tested.

However, it passed all verification tests.

 The system is able to display live images on the PC. However, due to the speed

of inspections, some images are never displayed on the PC, even though inspection data

from all images are recorded. This is because a DVT 630 camera is not capable of

transmitting that much data over Ethernet at a high enough rate to show all images. This

is not a major issue as the images are already displayed at a rate faster than can be easily

interpreted by an operator (two images per second).

The Inspection Program shows real-time statistics; changes in failed and total part

counts are displayed on the screen in less than one second after each inspection when the

line is running at full speed. The final system has an easy interface that allows quick

entry of parameters and quick changeover to a new reel by the operator.

The system meets resolution requirements; it is capable of accurately detecting

variations in image measurement less than .002 inches. The program running on the

camera is able to inspect the line at maximum speed without missing parts.

 41

Verification Methods and Results

 The software was heavily tested for bugs before final deployment into the

customer’s site. The overall system was verified by running actual reels through the

system. To test all data that the camera was viewing, the system was configured to

record all measured pin information to the database rather than just failed parts. A reel

with a known number of parts was run through the system to ensure that all pins were

inspected. The same reel was sent through the system twice. Both runs gave similar

results when the data was compared, proving system repeatability.

Future Recommendations

 Ideally, much more rigorous testing and verification would be performed to

determine exact levels of system performance. However, the costs of such testing to the

customer outweigh the benefits. The system should be run online during actual

production. In time additional system flaws may be discovered due to unforeseen

conditions occurring, which may require additional modifications to the system.

 Currently DMC is working with the customer on an additional project to modify

the system to inspect and record data on a completely different part. The camera will be

looking at the reel from a different perspective. Modifications to the triggering system,

camera mounting, light mounting, part fixture, camera programming, and Inspection

Program will permit the system to be changed over to this second inspection mode.

 42

APPENDICES

 43

APPENDIX A

CODE SAMPLES

 44

Figure A-1. MainMenu Initialize subroutine.

 45

Figure A-2. CreateReelTable subroutine.

 46

Figure A-3. OpenDatabase subroutine.

 47

APPENDIX B

FLOWCHARTS

 48

Figure B-1. Flowchart for MainMenu Form_Load subroutine.

 49

Figure B-2. Flowchart for MainMenu Initialize subroutine.

 50

START SUB

DataLinkWinsock_DataArrival

(CALLED BY DATA ARRIVAL

EVENT)

GET DATA AND PLACE IN ResultString:

Inspection1 : Inspection2 : Inspection3: … : InspectionN=>ResultString

IS A REEL OPEN

AND PROGRAM NOT

PAUSED?

IS ResultString EMPTY?

SPLIT ResultString:

Inspection1 : Inspection2 : Inspection3

OneInspection ResultString

CONVERT STRING TO ARRAY OF

SINGLES:

OneInspection=>ProductResults()

HANDLE THE INSPECTION:

TABULATE RESULTS, UPDATE

TABLES, AND UPDATE DISPLAYS

YES

NO
YES

END SUB

NO

HandleNewInspection

SeparateInspection

StringToSingleArray

AddNewInspection

Figure B-3. Data handling flowchart.

 51

APPENDIX C

SYSTEM WIRING DIAGRAM

 Please note that not all fuses, switches, and circuit breakers are shown in this

diagram. 120VAC power to the PC and the 24VDC power supply are not shown. Non-

connected pins for the high speed counter are not shown.

 52

 F
ig

ur
e

C
-1

. S
ys

te
m

 W
iri

ng
 D

ia
gr

am

